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ABSTRACT | This paper introduces high-quality audio coding

using psychoacoustic models. This technology is now abun-

dant, with gadgets named after a standard (mp3 players) and

the ability to play high-quality audio from literally billions of

devices. The usual paradigm for these systems is based on

filterbanks, followed by quantization and coding, controlled by

a model of human hearing. The paper describes the basic

technology, theoretical framework to apply to check for opti-

mality, and the most prominent standards built on the basic

ideas and newer work.
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I . INTRODUCTION

Many people consider low-bit-rate, high-quality audio

coding as one of the most prominent examples of disrup-

tive technologies. Some people even claim that audio

coding has been the cause of death of the music industry as

we have known it. Audio coding did speed up the trans-

formation of the music industry from selling physical

media to selling songs via the Internet. Economically and

as a technology, audio coding is one of the most successful

digital signal processing technologies of the last decades.

Decoders for mp3, Dolby Digital, Advanced Audio Coding

(AAC) and other advanced low-bit-rate, high-quality audio

coding formats number in many billions, built into por-

table media players, mobile phones, TV sets, and other

types of devices. High-quality audio coding at low bit rates
is only possible because we have learned how to exploit

human perception and omit information that is not

relevant to the listener. The magic of audio coding lies

in the combination of signal processing algorithms like

advanced filterbanks, quantization and coding, and con-

sideration of knowledge about human hearing, i.e., psy-

choacoustics. This paper explains the basic ideas and the

psychoacoustic models used for audio coding.
The first ideas about low-bit-rate coding of high-quality

digital audio go back to the mid-1970s. In [1], Blauert

proposed to build an audio coding system based on analog

filterbanks to be able to use psychoacoustics to control the

quantization noise of later stages. This was never imple-

mented. The first actual software for low-bit-rate percep-

tual coding of audio probably was the critical band coder

proposed by Krasner at the MIT Lincoln Labs (Cambridge,
MA, USA) [2].

The topic received much more attention in the mid

1980s, when digital coding of speech signals [3] was

already a well-established field of research (and even

applications) and, with the compact disc (CD), digital

storage of music became a commercial reality. Research on

audio coding started at several places in parallel. Some-

times only a few years later the proponents, giving their
first public presentations on the new technology, became

aware of other very similar systems. References [4]–[10]

list a number of these early proposals.
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Triggered by both, textbooks on psychoacoustics
[11]–[14] and early papers explaining the usage of masking

for improving speech coding (see, e.g., [15]), the notion

of psychoacoustics-based coding of high-quality audio

became a hot topic.

Several more general ideas triggered even more

research and helped to establish research consortia with

the necessary resources to further advance the art of high-

quality audio coding.
• In 1987, the European Digital Audio Broadcasting

(DAB) project needed a low-bit-rate representation

of high-quality audio to pack enough channels of

audio into its digital transmission system.

• In 1988, the Moving Picture Experts Group

(MPEG) of the International Organization for

Standardization/International Electrotechnical

Commission (ISO/IEC) issued a call for audio
coding algorithms to accompany the planned video

coding in a way that movies would fit on CD-ROM.

• Soon afterwards, the Advanced Television Stan-

dards Committee in the United States was looking

for the sound coding part of the future high-

definition (HD) and standard-definition (SD)

digital TV system for the United States.

The audio codecs developed for these activities form the
first generation of widely used low-bit-rate audio coding.

They are MPEG-Audio Layer II [16], MPEG-Audio Layer-3

(now called mp3) [16]–[18], and Dolby AC-3 (better known

as Dolby Digital) [19], [20]. From 1992 on, these systems

went from standardization to wide spread adoption.

This paper explains the basics of high-quality audio

coding in an abbreviated way. It introduces some simple

models of human hearing, explains ideas about their usage
for audio coding, and then introduces some audio coding

systems according to the timeline of their introduction.

This includes the original MPEG–Audio standards and

newer work, all covering the last 20 years. For more in-

depth coverage, the reader can find overviews in [21]–[25].

II . PSYCHOACOUSTICS

Unlike in speech coding, the knowledge about the human

auditory system (HAS) is clearly a decisive factor needed to

build audio coders capable of delivering high subjective qua-

lity for all possible input signals, including all kinds of music

and speech signals. There is no low-bit-rate high-quality

audio coding without build-in models of human hearing.

A. Auditory Masking
The performance of the HAS has been studied for many

years. There are still many open questions regarding the

mechanism of hearing, biology, and cognition, especially

regarding spatial hearing. We do have a clear understand-

ing of some ways the human hearing functions.

• The HAS starts in the cochlea with a highly

redundant time/frequency analysis.

• There is an absolute threshold of hearing that

varies with frequency.

• The inner hair cells, often viewed as detectors,

have about a 30-dB signal-to-noise ratio (SNR).
• Outer hair cells via changing stiffness help to

provide a much larger dynamic range of the HAS.

• In the presence of one sound, some other sounds

become inaudible, denoted masking.

• Masking relates to the time/frequency resolution

of the cochlea.

In any discussion of the HAS, the time/frequency analysis

is a primary consideration. Several scales of associated filter
bandwidths exist, including the ‘‘Bark’’ scale [11] and the

equivalent rectangular bandwidth (ERB) scale [26]–[28]. A

good estimate of the bandwidth of the auditory filter is 70-Hz

bandwidth starting at 20 Hz, and converting to about one

quarter octave when that exceeds 70 Hz.

Fig. 1 shows an example of modeled auditory filters

[29] with center frequencies following an ERB scale. These

filters implement a model of the level response as a
function of space (position on the cochlea) [30] before the

corresponding signal reaches the hair cells. In addition to

the aforementioned bandwidth increase with frequency,

the auditory filters are not symmetric in frequency, i.e., as

a function of space, they decay more slowly toward higher

than toward lower frequencies. For audio coding, this

implies that quantization noise at lower frequencies

compared to the masker is more audible than quantization
noise at higher frequencies.

In addition to simultaneous masking, also temporal

masking must be considered (i.e., when a masker and a

masked signal do not appear simultaneously). Premasking

time is in the 5 to under 1-ms range; postmasking for loud

signals persists strongly for at least 10 or so ms, and has

some effect out to 100–200 ms. A filterbank impulse

response much larger than the premasking time may lead
to the pre-echo artifacts described above. Premasking and

postmasking are illustrated in Fig. 2.

Many researchers originally reached the obvious con-

clusion to split an audio signal into bands corresponding

Fig. 1. Modeled auditory filterbank frequency response with band

center frequencies arranged on an ERB scale.
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to those of human hearing to obtain good audio coding

performance; see, e.g., [31]. In this system, removal of

irrelevancy (by considering masking) is assured, but

removal of signal redundancy is not very effective. Because

of this view (see Section III), usually filterbanks with

higher frequency resolution and uniform bands are used, as

illustrated in the top panel of Fig. 3. Masking is considered
in groups of bands, following an ERB scale, illustrated in

the bottom panel of Fig. 3.

Note that the absolute threshold of hearing, shown in

Fig. 4, is usually not directly considered in audio coding.

The problem is that audio reproduction systems have a

volume control, and any considerations on absolute level

will be made obsolete by the user changing listening level.

Psychoacoustic models used in commercial encoders just
set some very low threshold near the quantization noise

of the input pulse code modulation (PCM) signal.

Aside from the time-domain aspects of pre-echo, there

is another asymmetry to consider, that of tone–masking–

noise versus that of noise–masking–tone, as described in

an early paper by Hellman [32]. This asymmetry originates

beyond the cochlea, in the central nervous system. A tone

may require an SNR (inside of an ERB) close to 30 dB to

sound the same as the original. Narrowband noise masking

a tone may happen at 5.5 dB. In modern practice, the

models used in audio coding assume, e.g., tone–masking–

noise in an ERB to be circa 30 dB, and noise–masking–

tone (or better call it noise–masking–noise) about 6 dB,
for monaural signals.

In summary, a suitable masking model has to consider:

• pre-echo;

• ERB-scale frequency analysis;

• auditory filter shape;

• tone–masking–noise;

• noise–masking–noise.

B. Stereo Coding Issues
Stereo coding presents both additional problems and

additional possibilities, for further bit-rate reduction. For

example, in early audio coding work, we coded a nearly

monophonic song, ‘‘Tom’s Diner’’ by Suzanne Vega, in

good audio quality using a mono audio coder. The same
song coded at twice the bit rate with a stereo coder based on

two mono coders yielded much lower quality. The signal is

not completely monaural. The two independent mono

coders created an output signal with uncorrelated noise on

the left and right channels. The localization of uncorrelated

noise is wide and not focused in the middle with the voice

of Suzanne Vega singing. This noise is audible even if it is

masked in a single-channel coder. This problem results from
the ability of the auditory system to process time-domain

Fig. 2. Basic idea of premasking and postmasking for a switched masker. Masking extends to before and after the actual masker duration. At the

onset, there is even an increased amount of masking relative to the steady-state case (overshoot).

Fig. 3. Bands of a uniform filterbank (top) and groups of bands

following an ERB scale (bottom). Fig. 4. Absolute threshold of hearing.

Brandenburg et al. : Perceptual Coding of High-Quality Digital Audio

Vol. 101, No. 9, September 2013 | Proceedings of the IEEE 1907



cues in a binaural signal, in particular, by localizing different
parts of the signal at different positions. This leads to a

lowering of the masked threshold, known as the binaural

masking level difference (BMLD) [14].

Mid/side (M/S) stereo coding [33], also often referred

to as sum-difference coding, addresses the mentioned

issues. M/S coding switches between coding the left and

right channels directly, and coding of the left–right sum

and difference signals, whatever is more efficient. Other
methods (i.e., intensity stereo coding [34]) fall under the

general principles of spatial audio coding, as described in

Section VI-C.

C. Further Work Regarding Psychoacoustic Models
in Audio Coding

In recent years, the work regarding psychoacoustic mo-

dels for use in audio coding went in two opposite directions.
On the one hand, there was work to use more detailed

models to enhance the quality of audio coding systems,

especially at lower bit rates. One example of such work is

the Ph.D. dissertation of Baumgarte [35], who introduced

nonlinear functions into the estimation of actual masked

thresholds.

On the other hand, for commercially used encoders,

fast computation became more important than the last
little detail in the perceptual model. Some commercial

systems today use psychoacoustic models more looking

like the early work reported in [7].

The use of spatial cues (see Section VI) is another field

where more accurate psychoacoustic models are needed.

Currently, we are learning a lot about the interaction

between hearing and cognition leading to auditory illusion.

III . TIME/FREQUENCY-BASED
AUDIO CODING

Perceptual audio coding systems generally use a similar

structure, which is shown in the block diagram in Fig. 5.

The basic processing blocks are as follows.

• Analysis filterbank: A filterbank is used to decom-
pose the input signal into a time sequence of vectors

with as many elements as spectral components.

Together with the corresponding filterbank in the

decoder it forms an analysis/synthesis system.

• Perceptual model: Using either the time-domain

input signal and/or the output of the analysis

filterbank, an estimate of the actual (time- and

frequency-dependent) masking threshold is com-
puted using rules derived from psychoacoustics.

• Quantization and coding: To facilitate transmission,

the signal must be represented with finite precision;

it must be quantized. The general aim is to keep the

resulting error signal (usually referred to as quanti-

zation noise) below the masking threshold.

• Bit stream multiplex: The bit stream typically

consists of the quantized and coded spectral
coefficients and some side information, such as

bit allocation or information about the quantizers.

Before exploring the filterbank-based structure fur-

ther, we note that coding applications that require short

delay, such as mobile communications, are generally based

on prediction, e.g., [36]–[38]. In contrast to filterbank-

based architectures, prediction-based architectures can

provide a significant coding gain, even at zero delay.
Recent results [39] provide insight in the performance

bounds on predictive coding.

A. Filterbanks
The objective of audio coding is to reduce the rate by

not coding information multiple times, and by not coding

what you cannot hear. That is, the aim is to remove

redundancy and irrelevancy. The filterbank used in audio

coding facilitates both aims [40].

The analysis filterbank enables subsequent processing
to affect just a certain range of frequencies. Note that the

filter responses have a finite length. Each coefficient of the

resulting representation contributes to the description of a

finite time/frequency region. This makes it straightforward

Fig. 5. Block diagram of a perceptual encoding/decoding system.
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to base further processing on the psychoacoustic model by

using masking-dependent quantizers. The result is that

(most) irrelevant information is not coded.

The filterbank also facilitates coding because it removes

redundancy. In general, a vector can be decorrelated using

the Karhunen–Loève transform (KLT). Such decorrelation

also manifests itself as energy compaction in the coefficients.
Decorrelation generally implies that the coefficients are

more independent, and independence means that the scalar

quantizers operating on the different coefficient do not

encode the same information multiple times. Thus, Huang

and Schultheiss, in 1963, proposed to perform KLT-based

decorrelation on a block-by-block basis for the purpose of

coding [41]. The computation of the KLT can be avoided if it

is realized that, for a segment of a stationary signal, the KLT
approaches a transform to the frequency domain with

increasing segment length, e.g., [42] and [43]. That is, a

Fourier transform can be used to decorrelate the signal

samples. This operation can be approximated with a

filterbank. Indeed, for most real-world audio signals, it can

be shown that an increase in frequency resolution leads to

more energy compaction, which corresponds to lower

redundancy and, therefore, improved coding efficiency, if a
scalar quantizer is used. (Naturally, this only holds if the

resolution is not increased beyond the point where the

stationarity assumption breaks down.)

Filterbanks can be interpreted both from a filtering

viewpoint or a transform viewpoint. Historically, these

views led to two separate starting points for audio coding

systems: subband coders and transform coders. It is simple

to show the equivalence of both concepts. Consider the
critically sampled filterbank shown in the block diagram

of Fig. 6. By time reversing the impulse responses hi and gi

(and applying suitable time displacements), we obtain the

corresponding basis functions of the forward and backward

transforms. If the transform is orthonormal, the analysis

and synthesis responses are identical. The equivalence to

transforms also exists for oversampled filterbanks, where

the transforms can be based on frame theory, e.g., [44] and
[45]. For a simple transform that can be decomposed in a

fixed window and modulation functions, the window
corresponds to the prototype window of an equal

bandwidth filterbank [46].

As discussed above, the KLT for a stationary signal

corresponds to a frequency transform. For audio coding,

we would like to use a sequence of overlapping windowed

discrete Fourier transforms (DFTs), arranged to provide

perfect reconstruction. The smoothness of the windows

would reduce aliasing (which affects the spread of
quantization errors) in a practical application. However,

the Balian–Low theorem [45] shows that a perfect-

reconstruction filterbank with smooth windowing based

on the DFT requires oversampling: the number of

transform coefficients is larger than the number of time

samples. Obviously, oversampling is undesirable for audio

coding as it reintroduces a redundancy problem. Surpris-

ingly, the Balian–Low theorem does not carry over to the
discrete cosine transform (DCT): critically sampled,

smoothly windowed, perfect reconstruction filterbanks

are possible with the DCT. As a result, the so-called

modified discrete cosine transform (MDCT) has become a

standard component in audio coding. As it is a frequency

transform, it displays good energy compaction behavior

(effective decorrelation) and can be implemented effi-

ciently. The MDCT is known as well as cosine modulated
filterbank or lapped orthogonal filterbank [46]–[51]. The

MDCT was originally derived by considering aliasing

explicitly. In an MDCT, the aliasing components intro-

duced in analysis cancel each other during synthesis. This

phenomenon is known as time domain aliasing cancella-

tion (TDAC) [47]. For perfect reconstruction, the windows

of the MDCT must be power complementary. The most

common choices are cosine window and the so-called
Kaiser–Bessel-derived (KBD) window [19].

A practical example for the analysis/synthesis filter-

bank in audio coding is the one used in MPEG AAC [52].

The prototype filter (analysis window) is 2048 samples in

length and the number of transform frequencies is 1024.

This corresponds to an analysis frame of 21.3 ms at 48-kHz

sampling frequency. The window may straddle a transition

in the signal, which means the stationarity condition is
violated, reducing coding efficiency. More importantly,

masking is not constant in time in such signal segments: as

discussed in Section II, 20 ms is well beyond the so-called

premasking time. Note that any quantization error is

spread in time over a region of duration equal to the length

of gi in Fig. 5. That is, the duration of the error is equal to

the window length. This leads to so-called pre-echo

artifacts. Fig. 7 shows a well-known example of this effect:
First, there is the time-domain plot of hitting a castanet.

The next two plots show the effect of the spread of the

quantization error over time, following the synthesis

window of an audio coder (in this example, mp3). In the

first output signal, the spread of the quantization noise

extends well beyond the limit of premasking; see

Section II-A. These errors are often clearly audible. If

Fig. 6. An N-band filterbank with critical sampling. Perfect

reconstruction means that x̂ðnÞ ¼ xðn� ndÞ, where nd is the system

delay. # N means downsampling by N, meaning only every Nth sample

is kept, hence reducing the sampling rate accordingly. " N means

upsampling by N to obtain the original sampling rate. This is done

by inserting N� 1 zeros after each sample.
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we use shorter windows, we can keep the noise within

the bounds of premasking. To avoid pre-echo problems,

window switching is used to change the time/frequency

resolution properties of the filterbank from one time
segment to the next. Fig. 8 shows a typical sequence of

window switching [8], [53], [54] as used in AAC.

B. Quantization and Coding
The quantization and coding of the quantized values

constitutes the main data reduction step in a perceptual

audio coder. Essentially all audio coders use scalar

quantization to have a low level of computational

complexity. In general, quantization can be performed
under a fixed-rate constraint (resolution-constrained

quantization) or under an average-rate constraint (entropy-

constrained quantization). In the case of constrained-

resolution coding, the quantization index itself is the code

that is transmitted, whereas in the case of constrained-

entropy coding, the index is encoded with an entropy

coder. For both cases, the quantizer can be optimized

either using high-rate theory or by using a Lloyd algorithm,
e.g., [55] and [56].

In the case of entropy-constrained quantization, an

entropy coder is needed to remove the redundancy from

the quantization indices. Entropy coding can be performed

with arithmetic coding [57] (or, equivalently, a range

coder [58]), which can essentially reach optimal perfor-

mance since it can code any number of indices together.

An alternative is Huffman coding [59], which encodes all
indices separately (resulting in lower performance), but

generally is easier to implement and of lower computa-

tional complexity.

Fixed rate transmission is often required in practical

applications. It is possible to obtain fixed rate even if a

variable rate coder is used if delay is allowed (e.g., in

broadcast applications). In this case, buffer control can be

used to get a fixed rate across the transmission channel.
In practical audio coders, two methods for quantization

and coding are commonly used.

• Block companding/block floating point: The values

to be encoded are first normalized. The maximum

of the absolute values serves as a factor to scale all

the values (called scale factor), e.g., to a maximum

of 1. The quantizer divides the interval into a

uniform set of intervals and describes each interval
with a label. The rate allocation (step size) of the

frequency components is set by a bit allocation

algorithm driven by the psychoacoustic model.

In general, the quantization indices do not have a

uniform probability distribution. However, the

entropy coder is commonly omitted.

• Nonuniform quantization combined with Huffman

coding: With nonuniform quantization, similar to
the log-PCM of G.711 speech coding [60], it is

possible to have the quantization error increase

Fig. 7. Example of a pre-echo: (a) Castanet attack, time-domain

signal; (b) castanet coded with the synthesis windows shown,

long blocks; and (c) castanet coded with the synthesis

windows shown, short blocks.

Fig. 8. Block switching example for AAC: long blocks, start block,

8 short blocks, stop block, and long blocks.
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with the magnitude of the spectral sample.
Huffman coding of the variables is commonly used

to reduce the bit rate.

IV. EXAMPLES OF STANDARDIZED
CODECS

With the explanations above, it is easy to characterize

some of the most used perceptual audio coding systems.
• MPEG Layers I and II: These codecs use a 32-band

polyphase filterbank. The frame length is 384

(Layer I), respectively 1152 (Layer II), samples. All

12 samples in time-domain direction (succeeding

outputs of the filterbank at a given frequency) are

coded using block companding. A perceptual

model driven from the output of a separate DFT-

based filterbank (to get higher frequency resolu-
tion) together with the scale factors drive a bit

allocation algorithm. MPEG Audio Layers I and II

support two-channel stereo with intensity stereo

coding. MPEG Audio is defined in [16] and [61];

see the original paper in [17] and [62].

• MPEG Audio Layer-3 (mp3): The filterbank consists

of the polyphase filterbank, as used in Layers I and

II, cascaded with an 18- or (at short windows
mode) 6-band MDCT with optional window

switching. Quantization is done with a power law

(quantization step size increases with x0:75). The

decoder reconstructs the values according to

v ¼ i4=3 � s, where v is the reconstructed value,

i is the index which was transmitted, and s is a scale

factor. The scale factors modify the quantization

step size according to the output of a psychoacous-
tic model. Actual encoding is done using (limited)

adaptive Huffman coding. The tables are not

generated on the fly, but there are a number of

predefined tables. One solution is selected for a

locally minimum bit rate. The quantization and

coding is usually done using an iterative procedure

which modifies the scale factors using the analysis

by synthesis. MPEG Audio Layer-3 supports two-
channel stereo with either full-band meter per

second switching or intensity stereo.

• AC-3: The default audio coder for DVD and digital

TV (in many countries) is also known as Dolby

Digital. The filterbank uses some modification

of the MDCT, as described above, with different

window switching and 256 frequency lines.

Quantization and coding is done by the block
floating point. Different frequency lines (number

adapted) go into the block companding step. One

specialty of AC-3 is the possible combination of

backwards adaptive bit allocation (just calculated

from the exponents of the block floating point

representation), needing no additional side infor-

mation for the bit allocation information, and

forward adaptive bit allocation. AC-3 supports a
number of stereo modes, including 5.1 channel

stereo.

• AAC: MPEG-2 AAC [63], [64] is a successor of mp3

that incorporates several improvements, such as,

e.g., multichannel capability, and is used widely

for, e.g., music distribution over the Internet and

portable music playback. It follows the basic

structure of mp3 (high-resolution filterbank,
however with a 1028/128 spectral lines MDCT,

nonuniform quantization, and entropy coding)

with several enhancements regarding handling of

transient and tonal signals, joint coding of several

channels, and general efficiency. AAC supports a

number of stereo modes, including 5.1 channel

stereo using frequency-band-based meter per

second coding [19], [20].
The bit stream of these audio coders contains all the

necessary data to allow decoding just from the audio bit

stream. Usually, it is organized into frames of, e.g., 1152

samples for MPEG Audio Layers II or III or 1024 samples

for MPEG Audio AAC. Each frame contains header

information for standalone decoding (without additional

data), actual coded audio, and some provisioning for

nonaudio-related metadata.

V. SOME NEWLY STANDARDIZED AUDIO
CODECS SINCE ABOUT 2000

Starting around the year 2000, many new developments

started which extended the traditional architecture in

novel ways and, e.g., left the paradigm of waveform

coding, i.e., perfectly reconstructing the input signal if
infinite bit rate was available.

While there have been many more successful codec

developments [like sinusoidal coding or coders developed

within the International Telecommunication UnionV
Telecommunication Standardization Sector (ITU-T)], this

paper takes the coders developed by the ISO/MPEG

standardization group as examples to illustrate the more

recent evolution of perceptual audio coding.

A. Toward Lower Bit Rates: The AAC Codec Family
Starting from the MPEG-2 AAC [64], a number of

extensions were developed subsequently which established

a family of backwards compatible coders.

The first key idea extending the traditional audio coder

concept was bandwidth extension which provided a

substantial gain in audio quality for coding at low bit rates
(say, below 48 kb/s per channel). Up to this point, all audio

coders that used scalar quantizers showed the tendency to

introduce annoying artifacts if run at very low bit rates.

To avoid these artifacts, frequently, a low-pass filter was

introduced, leading to a very perceptible loss of high

frequencies. As explained in more detail below, bandwidth

extension processors bring back the high-frequency (HF)
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content by resynthesizing it from the transmitted low-

frequency (LF) part. The characteristics of the original HF

part (spectral envelope and other aspects) are extracted by

the encoder and sent as very compact side information
(few kilobits per second) to the decoder along with the

main LF bitstream.

While schemes for bandwidth extension have been

around for some time for speech signals [65], [66], the first

significant scheme for bandwidth extension in a general

audio coder was the spectral band replication (SBR)

scheme introduced around 2000 [67]. The combination

of SBR with the MPEG-2/4 AAC coder is called high-
efficiency AAC (HE–AAC) [68], [69] and allows good

quality stereo at bit rates as low as 48 kb/s. Fig. 9 shows the

basic signal flow of HE–AAC decoding. The bit stream is

decomposed into an AAC part and an SBR part. The former

is decoded to PCM by an AAC decoder and fed into an

analysis filter bank, forming the LF part of the final output

signal. From this, the HF generator generates the HF part

of the output, which is subsequently adjusted in its time/
frequency envelope and other characteristics, based on the

transmitted SBR parameters. Both LF and HF parts are put

together and converted back to time domain by a synthesis

filterbank. While the operation for SBR HF generation is

just a simple translation (copy-up) operation, more recent

schemes for bandwidth extension also make use of other

more elaborated techniques; see, e.g., [70].

As a second substantial step ahead, the HE–AAC codec
was subsequently combined with a so-called parametric

stereo [71] tool that allows efficient parametric coding of

stereo signals at very low bit rates. The principle is that,

instead of transmitting two discrete audio channels, a

single (mono) audio channel is encoded together with

some compact spatial side information; see Section VI-C

for a general explanation of the underlying concept of

spatial audio coding. The combination of HE–AAC and

parametric stereo emerged in 2004 and is known as HE–
AAC v2 [68].

A third important type of progress can be seen in the

recent convergence between the worlds of perceptual

audio coding and speech coding. While the former did not

make use of specific source models and focused on

exploiting the receiver characteristics (auditory percep-

tion), the latter extensively relies on models of human

speech production and some basic perceptual weighting.
As a consequence, when looking at very low bit rates,

perceptual audio coders exhibit better performance for music

signals whereas speech coders have a distinct advantage for

speech. In a quest to establish a truly universal coder that

‘‘performs comparable to or better than the best coding

technology that might be tailored specifically to coding of

either speech or general audio content,’’ both technology

approaches were integrated in the so-called MPEG Universal
Speech and Audio Coding (USAC) scheme [70]. The

architecture features an enhanced bandwidth extension

module, an improved parametric stereo scheme [72], and a

coding core which uses one of two coding modes alterna-

tively on a frame-by-frame basis. As a first mode, an

enhanced AAC-type filterbank-based audio coder is available

for coding of general audio signals, while an algebraic code-

excited linear prediction (ACELP)-type coding mode
provides optimum performance for speech signals. Both

coding modes have been integrated to share some processing

functions, such as the LPC-based noise shaping. Published in

early 2012, the integrated USAC coder [73] indeed

consistently outperforms [74] both HE–AAC v2 and AMR–

WB+ [75].

To summarize, Fig. 10 illustrates the overall structure of

a modern audio codec with both stereo and HF extension
pre/postprocessing wrapped around the actual core coders.

B. Audio Coding for High-Quality
Telecommunication

In parallel to the evolution of ‘‘regular’’ perceptual

audio coding (as was discussed previously for the example

of the AAC codec family), the same concepts were also

applied to the problem of communication coding, i.e.,

encoding/decoding with a low overall delay which forms

an essential requirement for two-way communication,

Fig. 9. The HE–AAC decoding process.

Fig. 10. Structure of modern audio codecs, including stereo and

HF processing.

Brandenburg et al. : Perceptual Coding of High-Quality Digital Audio

1912 Proceedings of the IEEE |



such as telephony, A/V teleconferencing, or telepresence.

While usual perceptual audio coders are able to deliver

good compression and high audio quality (full audio

bandwidth, low perceived distortion) for a wide range of

input signals, the delay inherent in their algorithms

substantially exceeds the desired target of less than 30 ms.
The first standardized generic low delay audio coder

was the low delay AAC (AAC–LD) codec which was

derived from AAC by using a shorter transform size,

avoiding the use of the bit reservoir and replacing adaptive

window switching by a technique which does not require

look-ahead and, thus, does not incur additional delay in the

encoder [76]. The codec was standardized by MPEG in

2000, has a minimum algorithmic delay of 20 ms, and
performs comparable to regular, not delay-constrained,

AAC with an average penalty in coding efficiency of ca.

8 kb/s per channel. AAC–LD has become widely deployed

as part of many hardware or desktop-computer-based

systems for videoconferencing.

In order to make the benefits of bandwidth extension

available for communication coding, a low delay version of

spectral band replication (SBR–LD) was developed and
combined with an enhanced version of AAC–LD [77]. Both

for the core audio coder and for the low delay SBR scheme,

dedicated novel low delay filter banks were designed that

reduce the delay while keeping a good frequency resolu-

tion. The resulting coder was standardized as enhanced low

delay AAC (AAC–ELD) in 2008 and provides a marked

increase in compression performance at low bit rates,

owing to the additional use of bandwidth extension.

C. Toward Highest Quality: (Near) Lossless
Audio Coding

While the main thrust of perceptual audio coding
research certainly has focused on enhancing subjective

quality at very low bit rates, also the opposite direction has

been pursued, i.e., coding at very high quality, which is

desired for archival applications and studio and production

purposes. A number of codecs have been developed for

coding audio at ‘‘better than perceptually transparent’’

quality (i.e., with some headroom toward audibility), in

a near-lossless or fully lossless fashion, where the latter

exclusively aims at reducing the redundancy present in the

encoded audio signals [78]–[81]. Some of these also

support coding of high-resolution audio signals, such as

96-kHz/24-b content.

VI. SPATIAL AUDIO CODING

A. SAC Encoding and Decoding
Spatial audio coding (SAC) enables higher compression

ratios for two-channel stereo and multichannel surround

audio signals. This is achieved by waveform coding only a

downmix of the input audio signal. The downmix contains

all signal components (disregarding spatial aspects) which
are present in the original two-channel or multichannel

audio signal. In addition, parameters describing ‘‘percep-

tually relevant differences’’ (in terms of spatial hearing)

between the original audio channels are estimated. These

parameters, denoted spatial cues, contain about two orders

of magnitude less information than the waveforms

themselves. Thus, the bit rate is significantly reduced by

transmitting them as opposed to transmitting all audio
channels. In the decoder, the downmix is processed such

that the spatial cues between the synthesized channels

approximate those of the original audio channels.

SAC-based audio coders initially used a mono downmix

[71], [82]–[90]. Later versions, such as MP3 Surround

[91], [92] and MPEG Surround [93]–[95] use also a stereo

downmix, enabling stereo backwards compatibility and

higher audio quality. Fig. 11 shows a block diagram of a
SAC encoder. A corresponding SAC decoder is illustrated

in Fig. 12.

B. Spatial Hearing and Cues
Similarly to the way humans perceive a visual image,

humans are also able to perceive an auditory spatial image.

The different objects which are part of the auditory spatial

image are denoted auditory events. When two-channel or

multichannel audio signals are played back over head-

phones or loudspeakers, they evoke an auditory spatial

Fig. 11. SAC encoder: Spatial cues between the input audio channels are estimated and encoded, the input signal is downmixed and

encoded with a conventional audio coder, and the encoded spatial cues and downmix are combined to a bit stream.
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image in the listener. To a large degree, the perceived

auditory spatial image relates to the binaural cues [14]

between the signals at the left and right ear entrances:

interaural level difference (ILD), interaural time differ-
ence (ITD), and interaural coherence (IC).

Fig. 13 illustrates perceptions of a listener when

exposed to left and right ear signals with different binaural

cues. ILD and ITD relate to the location of the perceived

auditory object, while IC relates to the size of the object.

When the same signals are played back over a stereo

loudspeaker system, similar perceptions are evoked in the

listener, but this time the localization is not in his head but
between the two loudspeakers, as illustrated in Fig. 14.

Because of this similarity in perception, the same signals

(e.g., from a CD) are suitable for headphone and

loudspeaker playback. For loudspeaker playback, the

interchannel cues between the channels are related to,

but not the same as the cues between the left and right

ear entrance signals. Thus, in the following, we use the

term interchannel cues as opposed to binaural cues.
A thorough discussion about the relation between

interchannel cues and auditory spatial image perception

can be found in [94].

C. Spatial Synthesis
First, stereo synthesis from a mono downmix is

considered, illustrated in Fig. 15. The downmix is

converted by a filterbank to short-time spectra. A

decorrelation filter is applied to obtain spectra of two

independent audio signals (the downmix and the decorre-

lated signal). For each frequency band, the mixing gains a1,
a2, b1, and b2 are computed such that the mixed two

channels have an interchannel level difference (ICLDs)

and interchannel coherence (ICC), as specified by the

corresponding ICLD and ICC from the spatial cues bit

stream. The so-obtained spectra of the left and right

channels are converted to the time domain, using an

inverse filterbank.

Not to use ICTDs here is a simplification compared to
the theoretically correct solution which has been chosen

for MPEG surround and, in this system, seems to work

well enough. This is especially true for mono-compatible

(intensity only) two-channel stereo mixes.

Similar principles are applied for multichannel syn-

thesis, where the interchannel cues are defined between

different channel pairs [91] or two-channel synthesis

blocks are cascaded [94]. MPEG Surround spatial synthe-
sis, illustrated in Fig. 16, applies the latter principle.

Additionally, the center channel is synthesized by means

of prediction. Spatial audio coding principles have also

Fig. 13. (a) ILD and ITD between a pair of headphone signals

determine the location of the auditory event which appears in the

frontal section of the upper head. (b) The width of the auditory event

increases (1–3) as the IC between the left and right headphone signals

decreases, until two distinct auditory events appear at the sides (4).

Fig. 14. (a) ICTDs and ICLDs between a pair of coherent source

signals determine the location of the auditory event which appears

between the two sources. (b) The width of the auditory event increases

(1–3) as the ICC between left and right source signals decreases.

Fig. 12. SAC decoder: The bitstream is separated into bitstreams for the encoded spatial cues and downmix. The downmix is decoded with a

conventional audio coder and the output signal is synthesized from the downmix using the decoded spatial cues.
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been applied for object-based coding with mixing or
remixing capability at the decoder [82], [96]–[98].

VII. CONCLUSION

Perceptual coding of high-quality audio has gone a long

way since the first papers appeared, showing the possibility

of substantial bit-rate reduction for near-CD quality audio.

While most of the applications today are based on the

standards devised in the 1990s, there is still active research

leading to new standards. Over the last 15 years, the

inclusion of coding tools based on parametric techniques,
like SBR or spatial-cue-based coding of stereo (including

multichannel) signals has considerably advanced the

possibilities of coding at low bit rates. While these systems

are in widespread use, other, even more ambitious ideas

like fully parametric coding, have gained much less

acceptance in the market. If we look at the current usage

of high-quality audio coding, we can even find a tendency
to higher bit rates for applications like storage on portable

media or Internet streaming. At the same time, the

psychoacoustic models implemented into consumer de-

vices capable of encoding (not just play back) got simpler

instead of more advanced and more accurate. Research in

the last years and currently is focusing on two major areas:

For some applications, even lower bit rates are necessary

while a high quality needs to be maintained for both
speech and audio signals. As one example, USAC addresses

this area of applications. The second area of research is the

goal to reach better acoustic illusion for audio playback.

While this research on upmix techniques, object-based

audio storage and advanced playback algorithms does not

fall into the scope of this paper, clearly some of the very

same ideas from psychoacoustics apply.

The first author has to acknowledge that current
systems have advanced the state of the art to a point he did

Fig. 16. A MPEG Surround decoder uses one two-to-three channel prediction process and two one-to-two channel spatial cue synthesis

processes for 5.1 surround synthesis.

Fig. 15. Synthesis of a stereo signal from the mono downmix.
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not think to be possible 20 years ago. Audio coding based
on perceptual models enables the availability of music on

the move and, via streaming services wherever we go, it

finally enables communication approaching live-like qual-

ity. While research seemed to have reached (unknown)

theoretical limits ten years ago, we still see a lively

research community leading to new applications made

possible. h
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